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SUMMARY

Despite its robustness, the design and optimization of aerodynamic shapes using genetic algorithms
su�ers from high computing cost requirements, due to excessive calls to Computational Fluid Dynamics
tools for the evaluation of candidate solutions. To alleviate this problem, either the use of distributed
genetic algorithms or the implementation of surrogate evaluation models have separately been proposed
in the past. A distributed genetic algorithm relies on the handling of population subsets that evolve
in a semi-isolated manner by regularly exchanging their best individuals. It is known that distributed
schemes generally outperform single-population ones. On the other hand, the implementation of less
costly surrogate evaluation tools, such as the autocatalytic radial basis function networks developed by
the authors for the purpose of getting rid of most of the ‘useless’ exact evaluations, reduces considerably
the computational cost. The aim of the present paper is to employ a surrogate evaluation model in the
context of a distributed genetic algorithm and to demonstrate that the combination of both results in
maximum economy in CPU cost. In addition, whenever a multiprocessor system is available, the gain is
much more pronounced, since the new optimization method maximizes parallel e�ciency. The proposed
method is used to solve inverse design and optimization problems in aeronautics and turbomachinery.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The design of optimal aerodynamic shapes is actually based on desirable pressure or velocity
distributions over their contours—often resulting from inverse boundary layer computations—
or the maximization of a �tness function measuring their aerodynamic performance (drag,
lift, losses, etc.). For design purposes, evolutionary methods, among them genetic algorithms,
GAs [1, 2], continue to gain ground against conventional steepest descent methods, since
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they are robust and capable to accommodate any commercial or in-house evaluation software
(a Computational Fluid Dynamics (CFD) solver for aerodynamic analyses, a �nite-element
solver for structural analyses, etc.) without the slightest modi�cation. Provided that the design
parameters and the associated search spaces have been chosen properly, GAs are e�ective
search algorithms and reach the optimal solution without getting stuck into local minima, even
in complex multi-modal problems. However, since a major feature of GAs is the handling
of populations of candidate solutions, excessive evaluations are usually required to locate the
optimal solution. In aeronautics or turbomachinery the evaluations rely on CFD codes with
high computing cost, so a GA-based design is time consuming and nowadays more e�ort is
put to devise GA variants requiring fewer evaluations than their conventional counterparts.
In their previous works [3–8], the authors proposed a new way of simultaneously using

exact (for the most important candidate solutions) and inexact (for the rest of the population)
evaluation tools in the course of a GA-based optimization method. The concept of the afore-
mentioned algorithm was quite simple: during the genetic evolution, store all the candidate
solutions which have been evaluated through the costly CFD tool in a database and then use
them systematically to forecast the merit of any new candidate solution. For this purpose, a
surrogate model (often referred to as metamodel), which is less demanding in CPU cost than
the exact evaluation tool, is dynamically built and used during a preliminary phase which
will be referred to as the inexact pre-evaluation (IPE) phase. Among the various possible
surrogate models, the authors preferably employ the radial basis function networks (RBFNs).
In contrast to other rival techniques, distinct ‘local’ RBFNs, are trained for each individual,
avoiding thus the modelling of the entire search space through a ‘global’ metamodel. In ad-
dition, the standard RBFNs are modi�ed by taking into account the sensitivity of the cost or
�tness function with respect to each one of the design parameters (sensitivity derivatives or
importance factors, IFs, [7]). In the sake of completeness, this algorithm will be described
brie�y in a subsequent paragraph.
On the other hand, distributed genetic algorithms (DGAs) constitute an improved variant of

their single-populated counterparts [9]. DGAs handle semi-isolated populations (demes), inter-
communicating regularly by exchanging the most promising among their population members.
Diversity in population is inversely proportional to the number of exchange cycles used.
Di�erent DGA variants can be devised by changing the connectivity of demes or the criteria
for selecting the individuals to be replaced by immigrants.
The scope of this paper is to employ the IPE technique into a DGA. By analysing a number

of inverse design or optimization problems in aeronautics and turbomachinery, as well as a
typical function minimization problem with multimodal landscape, it will be demonstrated
that the DGA enhanced by the surrogate models performs much better than the DGA or the
GA with the same surrogate model; needless to say that all of them are much faster than
the conventional GA. Therefore, the reduction in the number of required evaluations and,
consequently, in the overall CPU cost is a major advantage of the proposed optimization
method, which will be referred to as D(GA–IPE–IF) since it employs all the aforementioned
features.
A second interesting advantage of D(GA–IPE–IF) is in relation to the optimal use of a

multiprocessor system. The IPE technique reduces the number of evaluations per generation;
thus, a parallel platform with a higher number of processors than the, generally small, number
of exactly evaluated individuals per generation remains partially unexploited (assuming that
the evaluation of a single individual is not parallelized). However, with D(GA–IPE–IF), where
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many GAs with IPE are running simultaneously, a perfect exploitation of a multiprocessor
system occurs. Parallelization issues or other practicalities, such as sharing to avoid premature
convergence in demes, will be discussed as the paper develops.

2. INEXACT INFORMATION AIDED GENETIC OPTIMIZATION

As already mentioned in the introduction, the screening of the IPE phase relies on the low-cost
estimations provided by the RBFNs. During the genetic evolution, for each new individual a
RBFN is trained. For its training, a number of database entries which are closest to it should
be located and used. The database is dynamically updated by storing any previously evaluated
individual, along with its cost function value. This �rst order approximation of the �tness,
obtained in the IPE phase, guides the GA to evaluate accurately only the most promising
individuals. Thus, the role of RBFNs as metamodels is primordial and it is worth presenting,
at least in brief, their architecture.

2.1. Radial basis function networks

A RBFN for single-output approximations is a three-layer, fully connected, feedforward net-
work [10, 11] (Figure 1), which performs a non-linear mapping H : RN →RM from the N
input units to a layer of M hidden nodes, followed by a linear one � : RM →R to the output
unit y ∈ R

y=�Hx (1)

where x ∈ RN is the input, i.e. the vector of design variables.
Each hidden node is associated with a point cm; m=1; M in the design variables’ space

RN , which is referred to as the RBF centre. The non-linear mapping H is performed by the
application of an activation function Fm; m=1; M to the deviation of the input x ∈ RN from

Figure 1. Radial basis function network.
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the corresponding center on every hidden node. Hence, the response of each hidden node is

hm(x)=Fm(‖x − cm‖2)=F(‖x − cm‖2; rm) (2)

A typical activation function can be F(u; r)= exp(−u=r). Here, we consider rm= r=1;
m=1; M .
The network training is equivalent to the computation of the M synaptic weights ( 1;  2; : : : ;

 M ) =  , which are the training parameters. It is performed by presenting the network with
a number T of input–output pairs—i.e. airfoil shapes paired with cost function values. In the
context of IPE, the number of training patterns is moderate, so it can be set M =T and this
yields a quite smooth input–output mapping. If x̂(t); t=1; T is the t-th input pattern and ŷ(t)

the corresponding output, the network training reduces to the solution of the linear system

Ĥ  = ŷ (3)

where ŷ=(ŷ1; ŷ2; : : : ; ŷT ) are the known outputs of the training patterns and the matrix Ĥ
contains the responses of the hidden nodes to these patterns:

Ĥm; t = hm(x̂(t)); m=1; M and t=1; T

For M =T; Ĥ is a real symmetric positive-de�nite matrix.
A noticeable improvement over standard RBFNs was proposed by the authors [7], based on

the self-adaptation of the network model to the problem itself. So, in Equation (2), a weighted
norm was introduced that takes into account the importance of each one of the design variables
to the �tness function. Practically, instead of the standard norm-2, its weighted variant is used,

um= ‖x − c(m)‖2; w=
(

N∑
i=1

Ii(xi − c(m)i )2
)1=2

(4)

where Ii—the so-called Importance Factors, IFs—quantify the relative importance of the design
variables and can be calculated as follows:

Ii=
|@y∗=@xi|
‖∇y∗‖1 (5)

Superscript ∗ denotes computations at a characteristic point, such as the current optimal point
of the genetic evolution. It is interesting to stress that all partial derivatives are computed by
the network itself,

y=
M∑

m=1
 mhm(um) (6)

@y
@xi
=

M∑
m=1

Ii m

um
(xi − c(m)i )

dhm(um)
dum

(7)

The so modi�ed RBFNs are autocatalytic, since IFs are computed from the RBFN and used
for better training the network itself.
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2.2. The algorithm

The population members of each generations, after being pre-evaluated through locally trained
RBFNs, are rank sorted and the top �Npop among them (Npop is the population size
and 0¡�¡1 is a small percentage de�ned by the user, usually �≈ 0:1) undergo exact re-
evaluations through the CFD tool. Only the latter are stored in the database along with their
updated—exact—cost value. Genetic operations are then carried out regardless of whether
individuals were exactly or inexactly evaluated, creating thus the next generation. In this
manner, more generations are likely due for the same �nal solution quality. However, the
number of exact evaluations required in total is much lower.
The small number of adjacent patterns used to train each RBFN makes the training pro-

cedure of almost zero computing cost. Therefore, the total CPU cost of the IPE task could
safely be neglected, when compared to the cost for exactly evaluating even a small percentage
of the current population.
Having discussed the IPE concept and described brie�y the surrogate model, the inexact

information based optimization algorithm (abbreviated to GA–IPE–IF, as mentioned in Intro-
duction) is outlined below:

Phase 1: The starting population keeps evolving for a few generations, using exact evalua-
tions; all of the evaluated individuals are stored in the database along with their
cost values. The IFs are given equal initial values.

Phase 2: During the subsequent generations and for each individual, a local RBFN is trained
using a small number of adjacent entries from the database. The trained RBFN
provides an inexact cost or �tness value for the corresponding individual.

Phase 3: The �Npop top individuals in the population undergo exact evaluations using the
exact evaluation tool; so, the database is further enriched. Finally, if a new global
optimum is found, a RBFN is trained in its region only for the purpose of updating
the IF values.

Phase 4: Npop new o�spring are created through genetic operations using mixed up exact and
inexact cost values. Phases 2–4 are repeated up to the �nal convergence.

3. DISTRIBUTED GENETIC ALGORITHMS

DGAs operate with multiple sub-populations, referred to as demes, which evolve indepen-
dently and exchange information regularly through migration cycles. The regular exchange of
individuals acts as a synchronization barrier to the genetic evolution of demes that participate
in it. In various works, [9, 12, 13], the increased exploration ability of DGAs compared to
their single population counterpart was demonstrated.
The two main advantages of DGAs are their persistent diversity in the populations thanks

to the semi-isolation of demes as well as their straightforward implementation on parallel
hardware. Thus the search algorithm becomes resistant to premature convergence and, in
parallelized DGAs, the elapsed computing time is kept low. Homogeneous (with all demes
undergoing identical genetic operations, through the same values for the control parameters),
non-homogeneous (allowing di�erent operators and parametric values among the demes) but
also hybrid DGAs can be found in the literature. Coupled with a hierarchical structure, DGA’s
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e�ciency can be enhanced further [12]. By itself, DGA may constitute the higher hierarchical
level, allowing for di�erent operators or evaluation tools to be used at the lower levels of this
hierarchy. From a certain viewpoint, the implementation of the IPE phase within a DGA can
be considered as a three-level hierarchical scheme where the separation into demes, the use
of the RBFN for the IPE and the use of the costly exact evaluation tool constitute the three
levels.
According to the authors’ experience, which is in accordance to conclusions drawn in other

papers on DGAs, medium or small sized populations with a small number of demes generally
outperform any other con�guration. Therefore, in this work, no complex migration graphs
have been tried. However some migration scenarios have been evaluated. While the emigrants
are always the top individuals in a deme, the replaced individuals in the host deme could be
either the worst or some randomly chosen individuals. In the latter case, it is reasonable that
the few top individuals in the host deme are excluded from being replaced. Elitism can be
applied after the arrival of immigrants, though with the risk of increasing selective pressure;
an e�ective counterpoise to this drawback is presented in Section 3.2.

3.1. Inexact information aided DGA-implementation

The scope of this paper was to modify DGAs by incorporating a low-cost surrogate model.
The IPE phase, carried out separately within each deme, is expected to reduce further the
computing cost. Autocatalytic RBFNs are used and the training patterns are selected from a
single database, equally accessible by all demes; in this manner, the data collected during the
semi-isolated genetic evolutions is made available to each and every deme. The previously
described GA–IPE–IF algorithm is employed separately in each deme, giving rise to a new
algorithmic variant abbreviated to D(GA–IPE–IF).
Aiming not only at the reduction of the number of evaluations needed to attain a given

solution quality but also at increased overall performance, certain parallelization issues arise.
The master–slave parallel model is an evident choice, with the DGA being the master who
dispatches evaluation tasks to worker processes. In such a scheme, DGA involves two lev-
els of synchronization: (a) inside demes, prior to the application of genetic operators (all
the dispatched evaluation tasks should have been accomplished) and (b) between demes,
prior to the migration of individuals (all the demes participating in it should have evolved
for the necessary number of generations). This gives rise to the following
requirements:

1. In-deme synchronization should be self-ruled: the synchronization inside demes, at the
barrier of genetic operators, should be accomplished regardless of the situation in other
demes.

2. Worker processes should not be bound to demes: when a deme is waiting for others to
reach the migration barrier, all slaves should be disposable to the rest of demes that are
still evaluating their individuals.

In order to meet these requirements, the D(GA–IPE–IF) algorithm was implemented as
multithreaded and parallel application (Figure 2). Each deme evolves in its own thread, co-
ordinated by the main process thread. Requests for evaluations are posted to an ‘evaluation’
server. The latter, using its own control threads, handles the worker processes and com-
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Figure 2. Schematic representation of the D(GA–IPE–IF) algorithm, on a multiprocessing system.

municates with them via PVM or MPI programming standards. The worker processes are
completely hidden from the demes and each of them can evaluate individuals from any-
one of the demes. The results of evaluations are stored in a commonly accessible database,
from which they can be retrieved accordingly by the demes for the training of RBFNs.
Despite the complexity of threads synchronization, the scheme described before ful�ls com-
pletely the above stated speci�cations. Worker processes may remain idle only when some
or all of the demes have reached the inevitable synchronization barrier of
migration.

3.2. Preserving demes’ diversity

Features such as high migration rates or immigrants including elitism may increase the se-
lective pressure and the convergence rate at the early stages, but may also deteriorate con-
vergence at its latest stages. In order to circumvent this drawback, without damaging the
high starting convergence rate, sharing needs to be applied in some demes, whose popula-
tion has become too uniform. This means that individuals that are too close to the current
optimum are penalized, so as to foster exploration in more remote regions in the search
space.
The application of sharing is conditioned by the main process thread. A deme is allowed to

apply sharing to its individuals if its diversity has been reduced less than a threshold value.
Sharing is applied at a small number of distinct generations (4–5 for DGA or 15–20 for the
D(GA–IPE–IF) scheme) and is combined with slightly increased mutation probability. Only
a small subset of the total number of demes is allowed to undergo sharing at a time. In
addition, between two successive applications of sharing, a minimum number of generations
of normal evolution is indispensable.
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The following sharing function, which has zero derivative at zero distance, is proposed

si(z) = 4A
exp(−zi)

(1 + exp(−zi))2
(8)

z=
‖xi − xopt‖

w
=

di

w
; i=1; Npop (9)

where xi denotes the ith individual of the current population, whose �tness fi becomes fisi.
In Equation (9) xopt is the current optimal solution, whereas parameters A and w control the
shape of the niche, represented by Equation (8).
Throughout the genetic evolution, A remains constant (an appropriate value could be A=5),

the width w of the niche, however, is dynamically adjusted, taking into consideration the
dispersion of the population at that generation. If �d is the mean value of di and � their
standard deviation, then the width of the niche should be such that individuals whose distance
from the current optimum is greater than �� to be penalized by a factor less than a �A, that
is

s
(
��
w

)
= �A; �¿0 and 0¡�¡1 (10)

This leads to

w= − ��
ln[2=�(1 +

√
1− a)− 1] (11)

Suitable values are �=2 and a=0:01, which practically means that individuals, whose dis-
tance from the current optimum is greater than 2�, will not be penalized.
Sharing, as described above, is applied only to a some of the demes and especially to those

that tend to become too uniform, while the rest of them keep evolving normally. The impact
of sharing on convergence speed will be demonstrated in the results section.

4. METHOD APPLICATION—COMPARATIVE STUDIES

In this section, the proposed D(GA–IPE–IF) will be compared with the conventional or other
enhanced GA variants. In the airfoil inverse design or optimization problems that follow, there
will be a shift of emphasis from physics to computational cost. For the sake of fairness in
comparisons, all convergence rates will be measured and plotted in terms of exact evaluations,
unless otherwise stated. We recall that the cost for training and using RBFNs during the IPE
phase is negligible.
For the airfoil design problems, three �ow analysis-evaluation tools have been used, namely:

1. a panel method for incompressible, irrotational �ows,
2. a time-marching, inviscid �ow solver for compressible �uids [14], accompanied by the
unstructured grid generation software and

3. an integral boundary layer method coupled with an external �ow solver (MSES software
kindly provided by Drela, MIT [15]), with a range of validity that includes low-Reynolds
numbers and transonic Mach numbers.
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Table I. Suggested values of the D(GA–IPE–IF) algo-
rithm parameters, which were kept constant to all problems

examined.

GA

Uniform crossover probability 90%
Mutation probability 1%
Binary tournament probability 90%
Coding Gray binary

IPE

Minimum exact evaluations 120
Exactly evaluated 10%

DGA

Migration rate (gener.) 4
Number of emigrants 1
Elitism after migration Yes
Replaced individuals Worst
Migration graph Each to all

The airfoil shapes were parameterized using two Bezier curves, one for each side. The �rst
and the last control points along each curve were �xed, designating the leading and trailing
edges (LE=TE). The LE node and the �rst control points next to it over both airfoil sides
were alligned, for a rounded edge to be formed.
Table I summarizes the major D(GA–IPE–IF) parametric values that were common to

all of the examined problems. It is interesting to note that these values imply an increased
selective pressure within each deme. This may a�ect di�erently the convergence characteristics
of the algorithm during its �rst and last stages. In the �rst stages, the high selective pressure
is desirable so as D(GA–IPE–IF) to be endowed with convergence properties equivalent to
these of GA–IPE–IF. On the other hand, premature convergence is lurking and, for this reason,
sharing (as previously described) should necessarily be applied.

4.1. Minimization of the Rastrigin function

Prior to presenting airfoil design problems, the minimization of a known mathematical func-
tion, i.e. the so-called Rastrigin function, will be demonstrated. The problem involves N =30
variables, varying in [−5:12; 5:12] and requires the minimization of

f(x) = 10 · N +
N∑
i=1
(x2i − 10 cos(2�xi))

Since the solution landscape is multi-modal, this problem is well-suited for assessing the
e�ciency of optimization methods. For the GA variants (single deme) the size of population
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Figure 3. Design of a compressor cascade airfoil: convergence history.

Figure 4. Design of a compressor cascade airfoil: the mean distance from the
current optimal solution in each generation.

was 80, while for the DGA ones 4 demes of 20 individuals each were employed. In all
the computations illustrated in Figure 3, 4000 evaluations at most were allowed. It is clear
that D(GA–IPE–IF) prevails over any other scheme. During the early stages, its convergence
rate is similar to that of GA–IPE–IF. However, as evolution goes on, D(GA–IPE–IF) clearly
outperforms GA–IPE–IF.
During the previously shown computations, sharing was applied to the D(GA–IPE–IF)

algorithm, which helps maintaining high diversity in demes. As a consequence, the exploration
of the search space is better. Due to its major e�ect, a quantitative analysis of sharing is
necessary. So, Figure 4(a) plots the mean distance of the individuals in each generation from
the current optimal solution for a DGA without sharing. This distance measures the population
diversity and it is interesting to note that DGA yields lower mean distance values than the
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Figure 5. Design of a compressor cascade airfoil: convergence history.

single-population GA. The application of sharing to two of the demes at most each time
increases the mean distance, i.e. the diversity in each deme, and yields better exploration
capabilities, as shown in Figure 4(b).

4.2. Inverse design of the NACA4412 pro�le

This test-case deals with the redesign of the NACA4412 airfoil, the target being a known pres-
sure distribution at zero incidence. This distribution was computed using the panel method,
i.e. the same analysis tool used for the exact evaluations during optimization. For the parame-
terization of the airfoil, four control points per side were used, giving rise to 14 free variables
(recall that at the LE geometrical constraints are applied).
This run was carried out using a population of 30 individuals; the D(GA–IPE–IF) was

con�gured to employ 3 demes with 10 individuals each. The maximum number of evaluations
was set equal to 2000. It is interesting that, even with small deme populations, D(GA–IPE–IF)
outperforms any other scheme, as shown in Figure 5. In Figure 6, the best solution is compared
to the target airfoil. Some slight discrepancies in the cp distribution close to LE are due to
the small number of Bezier control points used to parameterize the airfoil.

4.3. Drag reduction of the RAE2822 airfoil

The next case deals with the optimization of the well known RAE2822 airfoil, the target
being the reduction of the airfoil drag, while maintaining the same lift. The �ow condi-
tions were chord-based Re∞=6:2× 106, freestream Mach number M∞=0:75 and �ow angle
a∞=2:734◦. Transition �xing on both airfoil sides was imposed, as in the original case.
The integral boundary layer (MSES) software was used as evaluation tool. At these �ow
conditions, the original airfoil yields lift and drag coe�cients equal to cl; ref = 0:749 and
cd; ref = 0:0235. The cost function was de�ned as f=(cl; ref − cl)2 + � · cd, where �=2.
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Figure 6. Design of a compressor cascade airfoil: optimal versus reference airfoil shapes
and the corresponding pressure coe�cient distributions.

Figure 7. Design of a compressor cascade airfoil: comparison of optimal and reference airfoils.

The computed optimal airfoil, along with the corresponding pressure coe�cient distribution
at the aforementioned �ow conditions are compared to the reference data (Figure 7). As it
can be deduced from Figure 7(b), the drag inducing shock wave was fully eliminated. For
the optimal design, the lift and drag coe�cients were equal to cl = 0:744 and cd = 0:00963.
For GA and GA-IPE-IF, the population size was 80 while for DGA and D(GA-IPE-IF)

4 demes of 20 individuals each were used. The convergence history of these four algorithmic
variants is plotted in Figure 8. It is evident that D(GA-IPE-IF) locates a better design much
faster than any other algorithm. This is particularly important in this problem where, during
the �rst generations, a noticeable percentage of the examined individuals (even close to 50%)
fails to converge. It should be made clear that any candidate airfoil shape, for which the
integral boundary layer method does not converge within the allowed number of iterations, is
given a high cost value.
Here, also, the role of sharing is important, as illustrated in Figure 9. Figure 9(a) presents

the mean distance of all population members from the current optimal solution within the �rst
two demes; the same quantity for the single-populated GA-IPE-IF is shown too. The peaks
that appear in the mean distance curve for the second deme indicate the regular application
of sharing, either to the deme itself or to any other deme, with which individuals have
been exchanged. According to the criterion used, sharing was �rst applied during the 52th
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Figure 8. Design of a compressor cascade airfoil: convergence history.

Figure 9. Design of a compressor cascade airfoil: e�ect of sharing in the D(GA-IPE-IF) scheme.

generation. A few generations later, the D(GA-IPE-IF) with sharing begins to outperform the
variant without sharing, as shown in Figure 9(b).

4.4. Lift maximization of a three-element airfoil

In the present case, the aim was to maximize the lift produced by a three-element, con�gura-
tion. The shape of its components—slat, main body, �ap—was given and only their relative
positions were allowed to vary within prede�ned bounds. Thus, the design variables are six:
horizontal and vertical distances from the main body and the rotation angle for �ap and slat.
The cost function was de�ned to be equal to f= − cl, where cl denotes the lift coe�cient of

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1149–1166



1162 M. K. KARAKASIS, A. P. GIOTIS AND K. C. GIANNAKOGLOU

Figure 10. Design of a compressor cascade airfoil: convergence history.

Figure 11. Design of a compressor cascade airfoil: analysis of the optimal con�guration.

the entire con�guration. This case was also analyzed in previous publications by the authors
[7, 8] but, in this paper. emphasis is given to the use of distributed algorithms.
The convergence rates of the tested algorithms are presented in Figure 10. Once more, the

superiority of D(GA-IPE-IF) is evident. The runs were carried out with population size equal
to 60 for GA and GA-IPE-IF or with 2 demes of 30 individuals each for the distributed-
algorithms. D(GA-IPE-IF) employed the sharing technique presented in previous sections.
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The optimal slat=�ap positions are shown in Figure 11, along with the iso-Mach contours of
the �ow �eld around the high-lift con�guration, as computed by an Euler equations solver.

4.5. Design of a compressor cascade airfoil

The last case aims at the design of an optimal compressor cascade airfoil, operating at inlet
Mach number M1 = 0:7, inlet �ow angle a1 = 45◦ and chord-based Re=4 · 105.
The airfoil was parameterized using 8 control point Bezier curve for the suction side and

7 control point one for the pressure side, combined with a circular arc at LE [7]. In addition,
the stagger angle was allowed to vary between −20 and −10◦ and the pitch (with unit chord)
between 0.55 and 0.65.
The target was the minimization of the total pressure loss coe�cient of the cascade with

an exit �ow angle as close as possible to 0◦. Moreover, the maximum thickness of the airfoil
had to be greater than 7% of the chord length. To deal with these two constraints the cost
function had the general form of

f= losses · pturning · pthickness
where pturning and pthickness represent exponential penalty functions for unacceptable designs.
The scope of tuning this case was slightly di�erent from the previous. As developed in

previous sections, GA–IPE–IF reduces the individuals, which need to be exactly evaluated
per generation, to a small subset of the entire population. Since the application of genetic
operators acts as a synchronization barrier, only �Npop individuals can be evaluated simulta-
neously. If more processors are available, they remain idle (assuming that no parallelization
of the evaluation software is done). This bottleneck can successfully be circumvented by
D(GA-IPE-IF), which employs multiple GA-IPE-IF schemes at the same time. Therefore,
the present test-case aims at demonstrating that D(GA-IPE-IF), besides its undisputed explo-
ration ability, alleviates this inherent drawback of a GA-IPE-IF working on a multiprocessor
platform.
For this reason, 12 identical processors have been used. Each GA or DGA variant was

distinctly con�gured so as to optimally exploit the available processors; the termination cri-
terion was de�ned by the maximum number of 2000 exact evaluations (Figure 12). The
con�gurations that were used are listed below:

GA : the population size was 84 (=7× 12),
GA-IPE-IF : the population size was 80, with only 8 individuals being exactly evaluated
per generation. An attempt to evaluate 12 individuals per generation gave worst results,
due to the smaller number of generations required to reach 2000 exact evaluations.

DGAand D(GA-IPE-IF): 3 demes of 40 individuals each have been used. Only 4 individuals
were evaluated exactly per deme and generation.

In this test-case only, the cost function is plotted against elapsed time in sec and the
convergence history is given in Figure 13. It is obvious that it takes much more elapsed
time for GA-IPE-IF to complete 2000 exact evaluations, despite its exploitation potential.
D(GA-IPE-IF), however, achieves the same solution quality as GA-IPE-IF more than 4 times
earlier and �nally locates the best solution, which is plotted in Figure 14(a). The distribution
of isentropic Mach number for this design is given in Figure 14(b).
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Figure 12. Design of a compressor cascade airfoil: convergence history in terms of exact evaluations.

Figure 13. Design of a compressor cascade airfoil: convergence history in terms of elapsed time.

5. CONCLUSION—COMMENTS

This paper extended the idea of using the so-called inexact pre-evaluation phase in distributed
genetic algorithms, giving rise to the scheme denoted as D(GA-IPE-IF). The goal of the
study was to investigate whether the distributed variant of GA-IPE-IF is well performing and
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Figure 14. Design of a compressor cascade airfoil: optimal airfoil shape and the
corresponding isentropic Mach number distribution around it.

to quantify the gain in CPU cost or, equivalently, the reduction in the required number of
evaluations for the same quality of �nal solution. In the sake of completeness and fairness,
D(GA-IPE-IF) was constantly compared to DGA and GA-IPE-IF as well as to traditional GA.
The main conclusions are outlined below:

• Given the superiority of GA-IPE-IF or DGA with respect to conventional GAs,
D(GA-IPE-IF) o�ers a new optimization algorithm, which is both faster and with bet-
ter exploration abilities than GA-IPE-IF and DGA. A practical outcome of the research
exposed in this paper could be a hierarchy of genetic optimization methods, where the
four variants used are listed in CPU-cost descending order:

◦ GA
◦ DGA
◦ GA-IPE-IF
◦ D(GA-IPE-IF)

• Apart from reduction in the number of required exact evaluations, D(GA-IPE-IF)
o�ers the additional advantage of optimally exploiting a greater number of intercon-
nected processors, since the simultaneously evolving demes are associated with more
than one distinct GA-IPE-IF algorithms. Consequently, the upper limit of non-idle pro-
cessor can be much higher than �Npop, which is the upper limit in a single-populated
GA-IPE-IF (assuming that a sequential evaluation software is used). Sharing, applied to
demes that tend to become too uniform, is necessary to avoid premature convergence.
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